Unbreakable Recovery
The Plazma™ formula is designed for elite high-performance athletes and serious bodybuilders and lifters. At this level, hard-working muscle requires advanced nutritional support before, during, and after training and competition.
The limiting factor in anyone's training is, of course, recovery. You can't push past where the body begins to break down without devastating consequences. To train harder, you have to create advanced anabolic chemistry inside working muscle to minimize the damage and inflammation that result from extreme physical demands.
Highly Structuralized Di-Tripeptides
The Plazma™ formula contains highly structuralized dipeptides and tripeptides from casein hydrolysate (HSDT-peptides) that transport directly into the bloodstream without further breakdown. Once in the body, HSDT-peptides produce an anabolic pulse of amplified protein synthesis. The net effect is rapid-rate muscle gains and increased fat loss. Here are some of the powerful effects of HSDT-peptides:
- Enhances nutrient uptake in muscle, directly affecting AMP-activated protein kinase signaling in the cell (Iwasa M, 2020).
- Improves vo2Max performance significantly and reduces exercise-induced muscle soreness (Saunders MJ, 2009).
- Increases muscle gain by 70% over whey hydrolysate (Demling RH, 2000).
- Doubles fat loss over whey hydrolysate (Demling RH, 2000).
- Increases levels of powerful metabolic regulator FGF-21, which improves insulin sensitivity in muscle (Fangmann D, 2020).
Highly Branched Cyclic Dextrin
The Plazma™ formula also contains highly branched cyclic dextrin (HBCD), which are specialized carbohydrates that significantly increase metabolic rate and performance levels. Research shows HBCD benefits athletes in these powerful ways:
- Increases VO2-max time to exhaustion by 70% in elite swimmers (Shirak T, 2015).
- Makes intense exercise actually feel easier (Furuyashiki T, 2014).
- Decreases stress hormone levels following exhaustive exercise (Suzuki K, 2014).
- Provides rapid hydration and nutrient loading without increasing gastric emptying time (Takii H, 2004).
- Increases endurance to fatigue by 27% over glucose supplementation and doesn't spike insulin in comparison (Takii H, 1999).
Taking timed Plazma™ doses — before, during, and after training — loads the muscle with key anabolic nutrients for maximum performance and enhanced recovery. The term for this muscle-engorging effect is called the "reactive pump." The reactive pump makes muscle hyper-responsive to nutrient uptake and hyper-responsive to growth signaling. It also provides you with unbreakable performance in the gym and competition
By uniquely preloading and pumping key nutrients into muscle, Plazma™ doses enable you to perform at and beyond your limits while recovering so fast you'll be excited to get back in the gym. Not only that, the increased gains you're going to experience from Plazma™ pulsing will be nothing less than shocking.
How to Use Plazma™ Dosing
Strength Training
TIME | SCHEDULE |
---|---|
00:20 Pre-Workout | 1/2 - 1 serving |
During Workout | 1/2 - 2 servings |
00:00 - 01:00 Post-Workout | 1-2 servings |
Endurance Event
TIME | SCHEDULE |
---|---|
00:20 Pre-Event | 1 serving |
During Event | 1 serving every 30 minutes |
00:00 - 01:00 Post-Event | 1-2 servings |
Mixing Instructions
- Pour 1,000 ml of cold water into a 2,000 ml Nalgene® bottle.
- Pour 195 g (3 scoops) of the Plazma™ powder into the cold water, secure the cap on the bottle, and shake vigorously for about 20 seconds, or until thoroughly mixed. If done correctly, the shaking will foam the contents of the bottle.
- While the mixture is still foamed, pour in 1/4 to 1/2 teaspoon of Biotest® Intensified Liquid Flavoring and gently swirl the contents until thoroughly mixed. Allow the flavored mixture to clear the foam and form a semi-transparent liquid. The foam should clear within five minutes.
- Add enough cold water to increase the fill volume to 2,000 ml and gently swirl the contents to mix thoroughly.
Here's feedback from two fitness legends: Dave Tate and John Meadows.
"You get leaner almost daily while gaining muscle and strength."

When Biotest CEO Tim Patterson first asked me about trying Plazma™ dosing, I was extremely skeptical. But I took him at his word, gave it a shot, and was completely blown away by the results. In fact, I contribute much of my recent success to Biotest's Plazma™ workout formula. It flat out works. You get leaner almost daily while gaining muscle and strength. It's nuts.
If you don't believe me, look at John Meadows. He's added 11 pounds of stage weight in one season, and the only thing he changed in his prep was adding Plazma™ dosing during his workouts. For a competitive bodybuilder at his level of development, gaining 10 pounds like that is ridiculous.
I feel like the Plazma™ protocol buys me considerable leeway. I can basically screw up my diet everywhere else, and as long as I take in this protocol, I'll meet my body's needs and grow. That's a huge plus for me. I have enough to think about, so the last thing I want is to be stressed about what I eat. It's nice knowing that as long as I have Plazma™ during my workout, I can basically cruise through the rest of the day. So if anything, this workout protocol is a huge stress reliever.
— Dave Tate
"I feel like I'm unbreakable."

Testing the Plazma™ formula, I did things that I'd never advise anybody to do, like crazy intensity and insane volume. I didn't cramp up, I didn't get sore, and I got these mind-blowing pumps.
Doing machine presses, for example, I'd usually do 8 or 10 reps three or four plates short of the stack. But that day, I ended up doing 16 or 17 reps with the whole stack. My training partners were dumbfounded, and these are guys that I've trained with for years. It was like that the whole workout. It was pretty freaky.
For the next three weeks, I kept training like this and eating a lot to see how much muscle I could gain. Getting leaner wasn't even on my mind. So when my body fat dropped from about 9 percent to 5 or 6 percent, it was pretty much by accident.
It was so amazing. I hadn't wanted to compete this year because of the stress, but now I could compete and still live life and be happy. All I have to do is follow the Plazma™ protocol and go to the gym and train my ass off, which I love to do. That's it. And to think, I pretty much got in shape by accident.
So I enter the contest in the best shape I've ever been in. I'm the biggest and hardest guy in the show, and second is the highest I've ever placed in a National contest... It's just remarkable. I literally put on 11 pounds of stage weight at 40 years old, and I haven't been sore.
I feel like I'm unbreakable.
— John Meadows
References
- Iwasa M et al. The milk casein hydrolysate-derived peptide enhances glucose uptake through AMP-activated protein kinase signaling pathway in skeletal muscle cells. Exp Physiol. 2020 Dec 28. PMID: 33369793 DOI: 10.1113/EP088770.
New findings: What is the central question of this study? Previously, we have shown that supplementation of Lactobacillus helveticus-fermented milk and milk casein hydrolysate (MCH) improves glucose metabolism in exercised mice and humans. Common active ingredients contained in both Lactobacillus helveticus-fermented milk and MCH may enhance glucose metabolism, but the details are yet to be clarified. What is the main finding and its importance? MCH enhanced glucose uptake in skeletal muscle cells by stimulating AMP-activated kinase (AMPK), but not insulin signaling. Moreover, the MCH-derived specific peptide, Ile-Pro-Pro, mimicked this effect, suggesting a mechanism for the MCH-induced metabolic improvement.
Abstract: Improvement of glucose metabolism in the skeletal muscle has a key role in exercise performance and prevention of metabolic diseases. In our previous study, we had shown that intake of milk casein hydrolysate improves glucose metabolism in humans, but the mechanism of action was not elucidated. In this study, we aimed to investigate the mechanism of action of milk casein hydrolysate and its derived peptides on glucose uptake and glucose metabolic signaling in cultured skeletal muscle cells. Differentiated C2C12 myotubes were used for the experiments. The differentiated cells were incubated with milk casein hydrolysate, valine-proline-proline, and isoleucine-proline-proline. Subsequently, the rate of 2-deoxy-glucose uptake and the phosphorylation levels of insulin-dependent and -independent signaling factors were examined. We found that the rate of 2-deoxy-glucose uptake in both milk casein hydrolysate and isoleucine-proline-proline-treated cells was higher than that in the control cells. Immunoblotting assays showed that the phosphorylation levels of AMP-activated protein kinase, a rate-limiting factor in insulin-independent signaling, and that of liver kinase B1, an upstream factor of AMP-activated protein kinase, in both milk casein hydrolysate and isoleucine-proline-proline-treated cells were higher than those in the control cells. Such significant effects were not observed after treatment with valine-proline-proline. Moreover, the insulin-dependent signaling was not significantly affected under the different conditions. The findings of our study suggest that milk casein hydrolysate enhances glucose uptake by activating insulin-independent AMP-activated protein kinase signaling in skeletal muscle cells, which might be mediated by a milk casein hydrolysate-derived peptide, namely, isoleucine-proline-proline. - Saunders MJ et al. Carbohydrate and protein hydrolysate coingestions improvement of late-exercise time-trial performance. Int J Sport Nutr Exerc Metab. 2009 Apr;19(2):136-49. PMID: 19478339 DOI: 10.1123/ijsnem.19.2.136.
Abstract: This study examined whether a carbohydrate + casein hydrolysate (CHO+ProH) beverage improved time-trial performance vs. a CHO beverage delivering approximately 60 g CHO/hr. Markers of muscle disruption and recovery were also assessed. Thirteen male cyclists (VO2peak = 60.8 +/- 1.6 ml . kg-1 . min-1) completed 2 computer-simulated 60-km time trials consisting of 3 laps of a 20-km course concluding with a 5-km climb (approximately 5% grade). Participants consumed 200 ml of CHO (6%) or CHO+ProH beverage (6% + 1.8% protein hydrolysate) every 5 km and 500 ml of beverage immediately postexercise. Beverage treatments were administered using a randomly counterbalanced, double-blind design. Plasma creatine phosphokinase (CK) and muscle-soreness ratings were assessed immediately before and 24 hr after cycling. Mean 60-km times were 134.4 +/- 4.6 and 135.0 +/- 4.0 min for CHO+ProH and CHO beverages, respectively. All time differences between treatments occurred during the final lap, with protein hydrolysate ingestion explaining a significant (p < .05) proportion of between-trials differences over the final 20 km (44.3 +/- 1.6, 45.0 +/- 1.6 min) and final 5 km (16.5 +/- 0.6, 16.9 +/- 0.6 min). Plasma CK levels and muscle-soreness ratings increased significantly after the CHO trial (161 +/- 53, 399 +/- 175 U/L; 15.8 +/- 5.1, 37.6 +/- 5.7 mm) but not the CHO+ProH trial (115 +/- 21, 262 +/- 88 U/L; 20.9 +/- 5.3, 32.2 +/- 7.1 mm). Late-exercise time-trial performance was enhanced with CHO+ProH beverage ingestion compared with a beverage containing CHO provided at maximal exogenous oxidation rates during exercise. CHO+ProH ingestion also prevented increases in plasma CK and muscle soreness after exercise. - Demling RH et al. Effect of a hypocaloric diet, increased protein intake and resistance training on lean mass gains and fat mass loss in overweight police officers. Ann Nutr Metab. 2000;44(1):21-9. PMID: 10838463 DOI: 10.1159/000012817.
Abstract: We compare the effects of a moderate hypocaloric, high-protein diet and resistance training, using two different protein supplements, versus hypocaloric diet alone on body compositional changes in overweight police officers. A randomized, prospective 12-week study was performed comparing the changes in body composition produced by three different treatment modalities in three study groups. One group (n = 10) was placed on a nonlipogenic, hypocaloric diet alone (80% of predicted needs). A second group (n = 14) was placed on the hypocaloric diet plus resistance exercise plus a high-protein intake (1.5 g/kg/day) using a casein protein hydrolysate. In the third group (n = 14) treatment was identical to the second, except for the use of a whey protein hydrolysate. We found that weight loss was approximately 2.5 kg in all three groups. Mean percent body fat with diet alone decreased from a baseline of 27 +/- 1.8 to 25 +/- 1.3% at 12 weeks. With diet, exercise and casein the decrease was from 26 +/- 1.7 to 18 +/- 1.1% and with diet, exercise and whey protein the decrease was from 27 +/- 1.6 to 23 +/- 1.3%. The mean fat loss was 2. 5 +/- 0.6, 7.0 +/- 2.1 and 4.2 +/- 0.9 kg in the three groups, respectively. Lean mass gains in the three groups did not change for diet alone, versus gains of 4 +/- 1.4 and 2 +/- 0.7 kg in the casein and whey groups, respectively. Mean increase in strength for chest, shoulder and legs was 59 +/- 9% for casein and 29 +/- 9% for whey, a significant group difference. This significant difference in body composition and strength is likely due to improved nitrogen retention and overall anticatabolic effects caused by the peptide components of the casein hydrolysate. - Fangmann D et al. Differential effects of protein intake versus intake of a defined oligopeptide on FGF-21 in obese human subjects in vivo. Clin Nutr. 2020 Jun 17;S0261-5614(20)30296-X. PMID: 32600859 DOI: 10.1016/j.clnu.2020.06.006.
Background: FGF-21 is described as a powerful metabolic regulator with beneficial effects including glucose-lowering and improvement of insulin sensitivity without hypoglycaemia. On the other hand, FGF-21 is activated when muscle and other tissues are stressed by external effects or internal cellular pathogens that lead to shortcomings in metabolic balance. Previous results suggested that FGF-21 could be a promising target to develop future metabolic therapeutics.
Purpose: The present study was performed to gain deeper insight into the regulation of FGF-21 by protein metabolism in obese human subjects.
Methods: FGF-21 serum concentrations were measured in a cohort of n = 246 obese humans ± type 2 diabetes mellitus (T2DM) (median age 53.0 [46.0; 60.0] years and BMI 40.43 [35.11; 47.24] kg/m2) and related to the nutritional protein intake. In addition, the effect of a novel oligopeptide purified from a β-casein hydrolysate on FGF-21 was examined in vitro in liver cells and in vivo in a human intervention study with the main focus on metabolic inflammation including 40 mainly obese subjects (mean age 41.08 ± 9.76 years, mean BMI 38.29 ± 9.4 kg/m2) in a randomized 20 weeks double-blind cross-over design.
Main findings: In the cohort analysis, FGF-21 serum concentrations were significant lower with higher protein intake in obese subjects without T2DM but not in obese subjects with T2DM. Furthermore, relative methionine intake was inversely related to FGF-21. While global protein intake in obesity was inversely associated with FGF-21, incubation of HepG2 cells with a β-casein oligopeptide increased FGF-21 expression in vitro. This stimulatory effect was also present in vivo, since in the clinical intervention study treatment of obese subjects with the β-casein oligopeptide for 8 weeks significantly increased FGF-21 serum levels from W0 = 23.86 pg/mL to W8 = 30.54 pg/mL (p < 0.001), while no increase was found for placebo.
Conclusion: While the total nutritional protein intake is inversely associated with FGF-21 serum levels, a purified and well characterised oligopeptide is able to induce FGF-21 serum levels in humans. These findings suggest a differential role of various components of protein metabolism on FGF-21, rather than this factor being solely a sensor of total nutritional protein intake. - Shiraki T et al. Evaluation of Exercise Performance with the Intake of Highly Branched Cyclic Dextrin in Athletes. Food Science and Technology Research. 2015 Volume 21 Issue 3 Pages 499-502. DOI: 10.3136/fstr.21.499.
Abstract: Highly branched cyclic dextrin (HBCD) is a novel type of maltodextrin with a narrow molecular weight distribution that is produced from starch. In this study, we investigated the effects of HBCD administration on endurance performance. Seven elite swimmers participated in three trials, conducted in random order. In each trial, the subjects received either HBCD, glucose (1.5 g carbohydrate/kg body weight) or water (as a control), and immediately carried out 10 cycles of intermittent swimming consisting of 5 min of swimming at 75% followed by 3 min of rest, and subsequent swimming at 90% to exhaustion. The time to fatigue was about 70% longer in the HBCD trial than that in the glucose and control trials, a significant difference. Plasma glucose in the HBCD group was maintained at higher levels during pre-swimming cycles than that in the glucose or water group. These results suggest that HBCD administration enhances endurance performance. - Furuyashiki T et al. Effects of ingesting highly branched cyclic dextrin during endurance exercise on rating of perceived exertion and blood components associated with energy metabolism. Biosci Biotechnol Biochem. 2014;78(12):2117-9. DOI: 10.1080/09168451.2014.943654.
Abstract: We compared the effect of relatively low doses (15 g) of highly branched cyclic dextrin (HBCD) with that of maltodextrin during endurance exercise on the rating of perceived exertion (RPE) in a crossover, double-blind study of healthy volunteers. The RPE increased during exercise and its increase was significantly less at 30 and 60 min after ingesting HBCD than maltodextrin. - Suzuki K et al. Effect of a sports drink based on highly-branched cyclic dextrin on cytokine responses to exhaustive endurance exercise. J Sports Med Phys Fitness. 2014 Oct;54(5):622-30. PMID: 25270782.
Background: Aim of the present study was to compare the effects of highly branched cyclic dextrin (HBCD) drink with a glucose-based control drink on immunoendocrine responses to endurance exercise.
Methods: Using a randomized, double-blind placebo-controlled cross-over design, seven male triathletes participated in two duathlon races separated by one month, consisting of 5 km of running, 40 km of cycling and 5 km of running. In the first race, four athletes consumed the HBCD-based drink and three athletes consumed the glucose-based drink. In the second race, three athletes consumed the HBCD-based drink and four athletes consumed the glucose-based drink. We collected blood and urine samples before and after the races to analyze leukocyte count and concentrations of hormones and cytokines.
Results: Lymphocyte and neutrophil counts increased significantly after exercise in both trials (P < 0.05), but were not significantly different between the trials. Plasma noradrenalin concentration increased significantly (P < 0.05) during exercise in the glucose trial, but not in the HBCD trial. Plasma concentrations of interleukin (IL)-8 and IL-10 increased significantly during exercise in both trials (P < 0.05) but were not significantly different between the trials. Post-race urinary IL-8, IL-10 and IL-12p40 concentrations were significantly lower in the HBCD trial compared with the glucose trial (P < 0.05), although the plasma concentrations of these cytokines were not significantly different between both trials.
Conclusion: These results suggest that the HBCD-based drink may attenuate the stress hormone response, and reduce the urinary cytokine levels following exhaustive exercise. - Takii H et al. Fluids containing a highly branched cyclic dextrin influence the gastric emptying rate. Int J Sports Med. 2005 May;26(4):314-9. doi: 10.1055/s-2004-820999.
Abstract: The rates of gastric emptying for highly branched cyclic dextrin (HBCD) and other carbohydrate (CHO) solutions were examined using ultrasonograph techniques. Ten healthy volunteers ingested water, physiological saline, or solutions containing various CHO, such as HBCD, glucose, maltose, sucrose, and commercially available dextrin. After a subject drank one of the solutions, the relaxed cross-sectional area of the pylorus antrum was measured at rest by real-time ultrasonography. The time required for gastric emptying was correlated with the relaxed cross-sectional area of the pylorus antrum. Among all of the solutions tested, physiological saline was transferred fastest from the stomach to the small intestine. For solutions of the same CHO, 5% solution was transferred faster than 10% solution. For CHO solutions other than HBCD, a low osmotic pressure was associated with rapid transfer from the stomach. The gastric emptying time (GET) of HBCD solution increased with an increase in its concentration. A shorter GET was observed for the CHO solutions at 59 to 160 mOsm regardless of their concentration. A sports drink based on 10% HBCD adjusted to 150 mOsm by the addition of various minerals, vitamins, and organic acids was evacuated significantly (p < 0.05) faster than a 10% HBCD solution or a sports drink based on 10% commercially available dextrin (DE16), which has a higher osmotic pressure (269 mOsm). Our results suggest that a shorter GET could be achieved with CHO solutions with osmotic pressures of 59 - 160 mOsm. Therefore, a sports drink based on 10% HBCD adjusted to 150 mOsm by the addition of minerals, vitamins, and organic acids could supply adequate quantities of CHO, fluid, and minerals simultaneously in a short time, without increasing GET. - Takii H et al. Enhancement of swimming endurance in mice by highly branched cyclic dextrin. Biosci Biotechnol Biochem. 1999 Dec;63(12):2045-52. DOI: 10.1271/bbb.63.2045.
Abstract: We investigated the ergogenic effect in mice of administering highly branched cyclic dextrin (HBCD), a new type of glucose polymer, on the swimming endurance in an adjustable-current swimming pool. Male Std ddY mice were administered a HBCD, a glucose solution or water via a stomach sonde 10 min before, 10 min after or 30 min after beginning swimming exercise, and were then obliged to swim in the pool. The total swimming period until exhaustion, an index of the swimming endurance, was measured. An ergogenic effect of HBCD was observed at a dose of 500 mg/kg of body weight, whereas it had no effect at a dose of 166 mg/kg of body wt (p < 0.05). The mice administered with the HBCD solution 10 min after starting the exercise were able to swim significantly longer (p < 0.05) than the mice who had ingested water or the glucose solution. The rise in mean blood glucose level in the mice administered with HBCD, which was measured 20 min after starting swimming, was significantly lower (p < 0.05) than that in the mice administered with glucose, although it was significantly higher (p < 0.05) than that in the mice administered with water. The mean blood insulin rise in the mice given HBCD was significantly lower (p < 0.05) than that in the mice given glucose. The mice administered with HBCD 30 min after starting the exercise swam significantly longer (p < 0.05) than the mice who had ingested water, although the enhancement of swimming time was similar to that of the glucose-ingesting mice. The gastric emptying rate of the HBCD solution was significantly faster (p < 0.05) than that of the glucose solution. However, this glucose polymer must have spent more time being absorbed because it has to be hydrolyzed before absorption, reflecting a lower and possibly longer-lasting blood glucose level. We conclude that the prolongation of swimming endurance in mice administered with HBCD depended on its rapid and longer-lasting ability for supplying glucose with a lower postprandial blood insulin response, leading to a delayed onset of fatigue.
Highly Structuralized Di-Tripeptide References
Highly Branched Cyclic Dextrin References


"You get leaner almost daily while adding weight and strength!"

When Biotest CEO Tim Patterson first asked me about trying Plazma™ I was extremely skeptical. But I took him at his word and gave it a shot, and was completely blown away by the results. In fact, I contribute much of my recent success to Biotest's Plazma.™ The stuff just flat out works. You get leaner almost daily while adding weight and strength. It's nuts.
If you don't believe me, look at John Meadows. He's added 10 pounds of stage weight in one season and the only thing he changed in his prep was adding Plazma™ during his workouts. For competitive bodybuilder at his level of development, gaining 10 pounds like that is ridiculous.
I feel like Plazma™ buys me considerable leeway. I can basically screw up my diet everywhere else and as long as I take in this protocol, I'll meet my body's needs and grow. That's a huge plus for me.
I have enough to think about, so the last thing I want is to be stressed about what I eat. It's nice knowing that as long as I have Plazma™ during my workout I can basically cruise through the rest of the day. So if anything, this workout protocol is a huge stress reliever.
Dave Tate
"It feels like I'm unbreakable."
When first testing Plazma,™ I did things that I'd never advise anybody to do — like crazy intensity and insane volume — and honestly, I didn't cramp up, I didn't get sore, and I got these mind-blowing pumps.
Doing machine presses, for example, I'd usually come 3 or 4 plates short of doing the entire stack and do maybe 8 or 10 reps — but that day I ended up using the whole stack, doing something like 16 or 17 reps. Thinking maybe I got lucky, I went to barbell incline press and the same thing happened — I knocked out a really high number of reps on that, as well. My training partners were dumbfounded. They're like, 'Wow, what happened to you?' and these are guys that I've trained with for years.
It went like that the whole workout. It was pretty freaky.
The next three weeks, I kept training like this and eating a lot to see how much muscle I could gain. Getting leaner wasn't even on my mind. So, when my body fat dropped from about 9 percent to 5 or 6 percent, it was pretty much by accident.
I thought, 'This is really cool. All I have to do to is follow the Plazma™ protocol and go to the gym and train my ass off, which is what I love to do. That's it.
The best way I can describe being on Plazma™ — it feels like I'm unbreakable.
John Meadows
*These statements have not been evaluated by the Food and Drug Administration. This product is not intended to diagnose, treat, cure, or prevent any disease.
Disclaimer: Individual results may vary.